Introduction to Language Models

Large Language Models: Introduction and Recent Advances

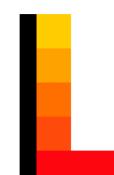
ELL881 · AIL821

Tanmoy Chakraborty Associate Professor, IIT Delhi https://tanmoychak.com/

Mistral Large 2 drops!

Mistral AI announces the release of its 123B model.

Mistral Large 2 supports 11 languages (French, German, Spanish, Italian, Portuguese, Arabic, Hindi, Russian, Chinese, Japanese, and Korean), along with 80+ coding languages (including Python, Java, C, C++, JavaScript, and Bash).



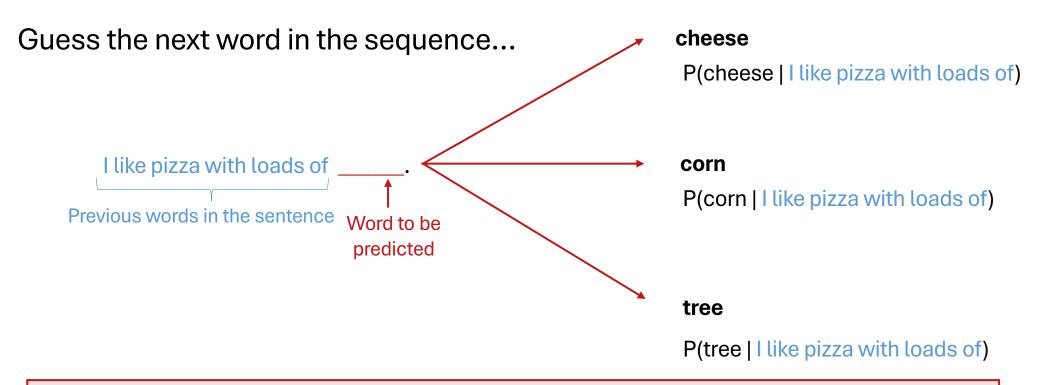
Released yesterday July 24, 2024 https://mistral.ai/news/mistrallarge-2407/

Its performance in **code generation, mathematics** and **reasoning** tasks is **comparable to larger LLMs** like GPT4o, Claude 3.5 Sonnet and Llama 3.1(405B).

Mistral Large 2 has a context window of **128k** !

Introduction to Statistical Language Models

Next Word Prediction



P(cheese| I like pizza with loads of) > P(corn| I like pizza with loads of) >> P(tree| I like pizza with loads of)

Probabilistic language models can be used to determine the **most plausible sentence** by assigning a probability to sentences.

Probabilistic language models can be used to determine the **most plausible sentence** by assigning a probability to sentences.

Speech Recognition

- P(I bought fresh mangoes from the market) >> P(I bot fresh man goes from the mar kit)
- P(I love eating spicy samosas) >> P(eye love eat tin spy sea some o says)

Probabilistic language models can be used to determine the **most plausible sentence** by assigning a probability to sentences.

Speech Recognition

- P(I bought fresh mangoes from the market) >> P(I bot fresh man goes from the mar kit)
- P(I love eating spicy samosas) >> P(eye love eat tin spy sea some o says)

Machine Translation

- P(Heavy rainfall) >> P(Big rainfall)
- P(The festival of lights) >> P(the festival of lamps)
- P(Family gatherings) > P(Family meetings)

Probabilistic language models can be used to determine the **most plausible sentence** by assigning a probability to sentences.

Speech Recognition

- P(I bought fresh mangoes from the market) >> P(I bot fresh man goes from the mar kit)
- P(I love eating spicy samosas) >> P(eye love eat tin spy sea some o says)

Machine Translation

...

- P(Heavy rainfall) >> P(Big rainfall)
- P(The festival of lights) >> P(the festival of lamps)
- P(Family gatherings) > P(Family meetings)
- Context Sensitive Spelling Correction
- Natural Language Generation

Language Models Are Everywhere

Detect language English	Spanish 🗸	←→ Hindi Bengali Ei	nglish 🗸
The train to Mum delayed	bai is X	मुंबई जाने वाली रही है	ट्रेन देरी से चल 🕁
		mumbee jaane vaalee tr rahee hai	en deree se chal
\$ ⊲>	30 / 5,000 🗾 🔻	4)	[] ⁶ g ~

Language Models Are Everywhere

Detect language English Spanish 🗸 🗲	Hindi Bengali English 🗸					
The train to Mumbai is × delayed	मुंबई जाने वाली ट्रेन देरी से चल 🕁 रही है					
	mumbee jaane vaalee tren deree se chal rahee hai					
♀ ◄) 30 / 5,000 — ~	4) [] ⁶ ₉ <					
Large Language Models Saved	C					
Large Language Models (LLMs) hav revolutionized	Review suggestions 2					
the field of natural language processing. LLMs, such	Correctness Clarity Engagement Delivery Style guide					
as GPT-3, have demonstrated impressive capabilities in understanding and <u>generate</u> human-	Correct your spelling hav					
like text across various natural language applications.	Wrong verb form generate					

Language Models Are Everywhere

Detect language English Spanish 🗸 🗲	Hindi Bengali En	glish 🗸						
The train to Mumbai is × delayed	मुंबई जाने वाली द्रे रही है	ट्रेन देरी से च	ल 🕁	T ChatGPT ~				
	mumbee jaane vaalee tre rahee hai	en deree se chal				\$		
♀ ◄) 30 / 5,000 -	4)	D 6	, ≪	Python script for	Q Design a fun	<i>■</i> Content calendar	Se Explain nostalgia	
Large Language Models Saved	©			daily email reports	coding game	for TikTok	to a kindergartener	
Large Language Models (LLMs) <u>hav</u> revolutionized the field of natural language processing. LLMs, such as GPT-3, have demonstrated impressive capabilities in understanding and <u>generate</u> human- like text across various natural language applications.	Review suggestions Image: Construction of the second s	agement Delivery	Style guide	Message ChatGPT				

2C P

Probabilistic Language Models

• **Goal:** Calculate the probability of a sentence or sequence consisting of *n* words

$$P(W) = P(w_1, w_2, w_3, ..., w_n)$$

or

• **Related Task:** Calculate the probability of the next word conditioned on the preceding words

$$P(w_6 | w_1, w_2, w_3, w_4, w_5)$$

Probabilistic Language Models

• **Goal:** Calculate the probability of a sentence or sequence consisting of *n* words

$$P(W) = P(w_1, w_2, w_3, ..., w_n)$$

or

• **Related Task:** Calculate the probability of the next word conditioned on the preceding words

A model that calculates either of these is referred to as a Language Model (LM).

Probability of a Sentence

Let's consider the following sentence:

The monsoon season has begun

• How to compute the probability of the sentence?

P(W) = P("The monsoon season has begun")

= P(The, monsoon, season, has, begun)

Probability of a Sentence

Let's consider the following sentence:

The monsoon season has begun

• How to compute the probability of the sentence?

P(W) = P("The monsoon season has begun")

= P(The, monsoon, season, has, begun)

We compute the above joint probability by using the principles of

Chain Rule of Probability.

Chain Rule of Probability

• Definition of **conditional probability**:

P(A | B) = P(A, B) / P(B)

Rewriting: P(A, B) = P(A | B) P(B)

Chain Rule of Probability

• Definition of **conditional probability**:

P(A | B) = P(A, B) / P(B)

Rewriting: P(A, B) = P(A | B) P(B)

More variables: P(A,B,C,D) = P(A) . P(B | A) . P(C | A,B) . P(D | A,B,C)

Chain Rule of Probability

Definition of **conditional probability**: ullet

P(A|B) = P(A,B) / P(B)

Rewriting: P(A, B) = P(A | B) P(B)

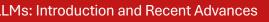
- More variables: P(A,B,C,D) = P(A) . P(B | A) . P(C | A,B) . P(D | A,B,C)
- The **Chain Rule** in general:

 $P(x_1, x_2, x_3, ..., x_n) = P(x_1) P(x_2 | x_1) P(x_3 | x_1, x_2) ... P(x_n | x_1, ..., x_{n-1})$

Probability of a Sequence

 $P(w_1 w_2 ... w_n) = \prod_i P(w_i | w_1 w_2 ... w_{i-1})$

- P(W) = P("The monsoon season has begun")
 - = P(The, monsoon, season, has, begun)
 - = P(The) x P(monsoon | The) x P(season | The monsoon) x P(has | The monsoon season) x P(begun | The monsoon season has)



Estimate Conditional Probabilities

P(begun | The monsoon season has) = $\frac{\text{Count (The monsoon season has begun)}}{\text{Count (The monsoon season has)}}$

Estimate Conditional Probabilities

P(begun | The monsoon season has) = $\frac{\text{Count (The monsoon season has begun)}}{\text{Count (The monsoon season has)}}$

• **Problem:** Enough data is not available to get an accurate estimate of the above quantities.

Estimate Conditional Probabilities

P(begun | The monsoon season has) = $\frac{\text{Count (The monsoon season has begun)}}{\text{Count (The monsoon season has)}}$

- **Problem:** Enough data is not available to get an accurate estimate of the above quantities.
- Solution: Markov Assumption

Markov Assumption

Every next state depends only the previous k states

Markov Assumption

Every next state depends only the previous k states

• Chain Rule:

$$P(w_1 w_2 ... w_n) = \prod_i P(w_i | w_1 w_2 ... w_{i-1})$$

• Applying Markov Assumption we condition on only the preceding k words:

$$P(w_1 w_2 ... w_n) = \prod_i P(w_i | w_{i-k} ... w_{i-1})$$

Markov Assumption

Every next state depends only the previous k states

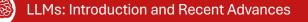
• Chain Rule:

$$P(w_1 w_2 ... w_n) = \prod_i P(w_i | w_1 w_2 ... w_{i-1})$$

• Applying Markov Assumption we condition on only the preceding k words:

$$P(w_1 w_2 ... w_n) = \prod_i P(w_i | w_{i-k} ... w_{i-1})$$

 Probabilistic Language Models exploit the Chain Rule of Probability and Markov Assumption to build a probability distribution over sequences of words.



N-gram Language Models

• Let's consider the following conditional probability:

P(begun | the monsoon season has)

• An N-gram model considers only the preceding N –1 words.

N-gram Language Models

• Let's consider the following conditional probability:

P(begun | the monsoon season has)

- An N-gram model considers only the preceding N -1 words.
 - Unigram: P(begun)
 - Bigram: P(begun | the)
 - Trigram: P(begun | the monsoon)

N-gram Language Models

• Let's consider the following conditional probability:

P(begun | the monsoon season has)

- An N-gram model considers only the preceding N -1 words.
 - Unigram: P(begun)
 - Bigram: P(begun | the)
 - Trigram: P(begun | the monsoon)

Relation between Markov model and Language Model:

An N-gram Language Model \equiv (N -1) order Markov Model

Raw bigram counts (absolute measure)

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

Raw unigram counts (absolute measure)

i	want	to	eat	chinese	food	lunch	spend
2533	927	2417	746	158	1093	341	278

Unigram and bigram counts for eight of the words (out of V = 1446) in the Berkeley Restaurant Project corpus of 9332 sentences. Previously-zero counts are in gray.

Raw bigram counts (absolute measure)

		i	want	to	eat		chinese	foo	d lu	inch	spe	end	
	i	5	827	0	9		0	0	0		2		
	want		i		want	to	eat	(chinese	e foo	d	lunch	spend
	to	i	0.0	02	0.33	0	0.0	036 (0	0		0	0.00079
	eat	want	0.0	022	0	0.66	6 0.0	011 (0.0065	0.0	065	0.0054	0.0011
	chinese	to	0.0	0083	0	0.00	017 0.23	8 (0.0008	3 0		0.0025	0.087
	food	eat	0		0	0.00	027 0	(0.021	0.0	027	0.056	0
	lunch	chine	se 0.0	063	0	0	0	(0	0.5	2	0.0063	0
	spend	food	0.0	14	0	0.01	4 0	(0.00092	2 0.0	037	0	0
-		lunch	0.0	059	0	0	0	(0	0.0	029	0	0
Raw unigi	ram counts	spend	0.0	036	0	0.00	036 0	(0	0		0	0
i	want	to	ea	at	chine	se	food	lu	inch	sper	nd		
2533	927	2417	7 74	46	158		1093	34	41	278			

Unigram and bigram counts for eight of the words (out of V = 1446) in the Berkeley Restaurant Project corpus of 9332 sentences. Previously-zero counts are in gray.

Limitation of N-gram Language Models

• An insufficient model of language since they are **not effective in capturing long-range dependencies present in language**.

Limitation of N-gram Language Models

- An insufficient model of language since they are **not effective in capturing long-range dependencies present in language**.
 - Example:

The **project**, which he had been working on for months, was finally **approved** by the committee.

The above example highlights the long-distance dependency between "project" and "approved", where the context provided by earlier words affects the interpretation of later parts of the sentence.

Estimate N-gram Probabilities

- Maximum Likelihood Estimate (MLE):
 - Used to estimate the parameters of a statistical model
 - Determine the most likely values of the parameters that would make the observed data most probable

Estimate N-gram Probabilities

- Maximum Likelihood Estimate (MLE):
 - Used to estimate the parameters of a statistical model
 - Determine the most likely values of the parameters that would make the observed data most probable
- For example, bigram probabilities can be estimated as follows:

$$P(w_{i} | w_{i-1}) = \frac{count(w_{i-1}, w_{i})}{count(w_{i-1})} = \frac{c(w_{i-1}, w_{i})}{c(w_{i-1})}$$

Limitations with MLE Estimation

Problem: N-grams only work well for word prediction if the test corpus looks like the training corpus. It is often not the case in real scenarios (data sparsity problem).

Limitations with MLE Estimation

Problem: N-grams only work well for word prediction if the test corpus looks like the training corpus. It is often not the case in real scenarios (data sparsity problem).

Training set:

- ... enjoyed the movie
- ... enjoyed the food
- ... enjoyed the game
- ... enjoyed the vacation

Zero probability n-grams:

LMs: Introduction and Recent Advances

- P(concert | enjoyed the) = P(festival | enjoyed the) = P(walk | enjoyed the) = 0
- As a result, the probability of the test set will be 0.
- Perplexity cannot be computed (Cannot divide by 0).

Test set:

- ... enjoyed the concert
- ... enjoyed the festival
- ... enjoyed the walk

Limitations with MLE Estimation

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

Solution: Various smoothing techniques

Laplace Smoothing (Add-One Estimation)

- Imagine that we encountered each word (N-gram) one more time than its actual occurrence.
- Simply increase all the counts by one!

Laplace Smoothing (Add-One Estimation)

- Imagine that we encountered each word (N-gram) one more time than its actual occurrence.
- Simply increase all the counts by one!
- MLE estimate (in case of bigram model)

$$P_{MLE}(w_i | w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

• Add-1 estimate:

$$P_{Add-1}(w_i | w_{i-1}) = \frac{c(w_{i-1}, w_i) + 1}{c(w_{i-1}) + |V|}$$

Laplace Smoothing (Add-One Estimation)

- Imagine that we encountered each word (N-gram) one more time than its actual occurrence.
- Simply increase all the counts by one!
- MLE estimate (in case of bigram model)

$$P_{MLE}(w_i | w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

• Add-1 estimate:

$$P_{Add-1}(w_i | w_{i-1}) = \frac{c(w_{i-1}, w_i) + 1}{c(w_{i-1}) + |V|}$$

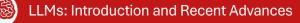
• Effective bigram count ($c^*(w_{n-1}w_n)$):

$$\frac{c^{*}(w_{n-1}w_{n})}{c(w_{n-1})} = \frac{c(w_{n-1},w_{n}) + 1}{c(w_{n-1}) + |V|}$$

	i	want	to	eat	chinese	food	lunch	spend
i	6	828	1	10	1	1	1	3
want	3	1	609	2	7	7	6	2
to	3	1	5	687	3	1	7	212
eat	1	1	3	1	17	3	43	1
chinese	2	1	1	1	1	83	2	1
food	16	1	16	1	2	5	1	1
lunch	3	1	1	1	1	2	1	1
spend	2	1	2	1	1	1	1	1

Add-one smoothed bigram counts for eight of the words (out of V = 1446) in the Berkeley Restaurant Project corpus of 9332 sentences. Previously-zero counts are in gray.

Example from Speech and Language Processing book by Daniel Jurafsky and James H. Martin



	i	want	to	eat	chinese	food	lunch	spend
i	0.0015	0.21	0.00025	0.0025	0.00025	0.00025	0.00025	0.00075
want	0.0013	0.00042	0.26	0.00084	0.0029	0.0029	0.0025	0.00084
to	0.00078	0.00026	0.0013	0.18	0.00078	0.00026	0.0018	0.055
eat	0.00046	0.00046	0.0014	0.00046	0.0078	0.0014	0.02	0.00046
chinese	0.0012	0.00062	0.00062	0.00062	0.00062	0.052	0.0012	0.00062
food	0.0063	0.00039	0.0063	0.00039	0.00079	0.002	0.00039	0.00039
lunch	0.0017	0.00056	0.00056	0.00056	0.00056	0.0011	0.00056	0.00056
spend	0.0012	0.00058	0.0012	0.00058	0.00058	0.00058	0.00058	0.00058

Add-one smoothed bigram probabilities for eight of the words (out of V = 1446) in the BeRP corpus of 9332 sentences. Previously-zero probabilities are in gray.

Example from Speech and Language Processing book by Daniel Jurafsky and James H. Martin

	i	want	to	eat	chinese	food	lunch	spend
i	3.8	527	0.64	6.4	0.64	0.64	0.64	1.9
want	1.2	0.39	238	0.78	2.7	2.7	2.3	0.78
to	1.9	0.63	3.1	430	1.9	0.63	4.4	133
eat	0.34	0.34	1	0.34	5.8	1	15	0.34
chinese	0.2	0.098	0.098	0.098	0.098	8.2	0.2	0.098
food	6.9	0.43	6.9	0.43	0.86	2.2	0.43	0.43
lunch	0.57	0.19	0.19	0.19	0.19	0.38	0.19	0.19
spend	0.32	0.16	0.32	0.16	0.16	0.16	0.16	0.16

Add-one reconstituted counts for eight words (of V = 1446) in the BeRP corpus of 9332 sentences. Previously-zero counts are in gray.

Example from Speech and Language Processing book by Daniel Jurafsky and James H. Martin

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

	i	want	to	eat	chinese	food	lunch	spend
i	3.8	527	0.64	6.4	0.64	0.64	0.64	1.9
want	1.2	0.39	238	0.78	2.7	2.7	2.3	0.78
to	1.9	0.63	3.1	430	1.9	0.63	4.4	133
eat	0.34	0.34	1	0.34	5.8	1	15	0.34
chinese	0.2	0.098	0.098	0.098	0.098	8.2	0.2	0.098
food	6.9	0.43	6.9	0.43	0.86	2.2	0.43	0.43
lunch	0.57	0.19	0.19	0.19	0.19	0.38	0.19	0.19
spend	0.32	0.16	0.32	0.16	0.16	0.16	0.16	0.16

More General Smoothing Techniques

• Add-k smoothing:

$$P_{Add-k}(w_{i} | w_{i-1}) = \frac{c(w_{i-1}, w_{i}) + k}{c(w_{i-1}) + k|V|}$$
$$P_{Add-k}(w_{i} | w_{i-1}) = \frac{c(w_{i-1}, w_{i}) + m(\frac{1}{|V|})}{c(w_{i-1}) + m}$$

More General Smoothing Techniques

• Add-k smoothing:

$$P_{Add-k}(w_{i} | w_{i-1}) = \frac{c(w_{i-1}, w_{i}) + k}{c(w_{i-1}) + k|V|}$$
$$P_{Add-k}(w_{i} | w_{i-1}) = \frac{c(w_{i-1}, w_{i}) + m(\frac{1}{|V|})}{c(w_{i-1}) + m}$$

• Unigram prior smoothing:

$$P_{\text{UnigramPrior}}(w_{i} | w_{i-1}) = \frac{c(w_{i-1}, w_{i}) + m P(w_{i})}{c(w_{i-1}) + m}$$

More General Smoothing Techniques

• Add-k smoothing:

$$P_{Add-k}(w_{i} | w_{i-1}) = \frac{c(w_{i-1}, w_{i}) + k}{c(w_{i-1}) + k|V|}$$
$$P_{Add-k}(w_{i} | w_{i-1}) = \frac{c(w_{i-1}, w_{i}) + m(\frac{1}{|V|})}{c(w_{i-1}) + m}$$

• Unigram prior smoothing:

$$P_{\text{UnigramPrior}}(w_{i} | w_{i-1}) = \frac{c(w_{i-1}, w_{i}) + m P(w_{i})}{c(w_{i-1}) + m}$$

An optimal value for k or m can be determined using a held-out dataset.

• As N grows larger, the N-gram model becomes more powerful. However, its capability to accurately estimate parameters decreases due to data sparsity problem.

- As N grows larger, the N-gram model becomes more powerful. However, its capability to accurately estimate parameters decreases due to data sparsity problem.
- When we have limited knowledge about larger contexts, it can be helpful to consider less context.

- As N grows larger, the N-gram model becomes more powerful. However, its capability to accurately estimate parameters decreases due to data sparsity problem.
- When we have limited knowledge about larger contexts, it can be helpful to consider less context.
- Back-off:
 - Opt for a trigram when there is sufficient evidence, otherwise use bigram, otherwise unigram

- As N grows larger, the N-gram model becomes more powerful. However, its capability to accurately estimate parameters decreases due to data sparsity problem.
- When we have limited knowledge about larger contexts, it can be helpful to consider less context.
- Back-off:
 - Opt for a trigram when there is sufficient evidence, otherwise use bigram, otherwise unigram
- Interpolation:
 - Mix unigram, bigram, trigram
 - Interpolation generally results in improved performance

Interpolation

Linear interpolation

$$\hat{P}(w_n|w_{n-2}w_{n-1}) = \lambda_1 P(w_n|w_{n-2}w_{n-1}) +\lambda_2 P(w_n|w_{n-1}) +\lambda_3 P(w_n)$$

Context-dependent interpolation

$$\hat{P}(w_n|w_{n-2}w_{n-1}) = \lambda_1(w_{n-2}^{n-1})P(w_n|w_{n-2}w_{n-1}) \\
+\lambda_2(w_{n-2}^{n-1})P(w_n|w_{n-1}) \\
+\lambda_3(w_{n-2}^{n-1})P(w_n)$$

